Second Quarter 2017 Results and Pipeline Update

Our Value, Our Science, Our Focus

August 8, 2017
Forward-Looking Statements

This presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 that are subject to risks, uncertainties and other important factors that could cause actual results to differ materially from those indicated by such forward-looking statements. Achillion may use words such as “expect”, “anticipate”, “project” “target”, “intend,” “plan,” “aim,” “believe,” “seek,” “estimate,” “can,” “could,” “focus,” “will,” “look forward,” “continue,” “goal,” “strategy,” “may” and similar expressions to identify such forward-looking statements. These forward-looking statements are about Achillion Pharmaceuticals, Inc. and its business and prospects, including, without limitation, statements regarding drug discovery, research, clinical development, timing of anticipated clinical trials and clinical data for our product candidates, our expectations regarding the potential safety, efficacy and clinical utility for our product candidates, regulatory approval processes, market opportunities, strategic goals, our collaboration with Janssen in HCV, intellectual property, competition, and financial results. To the extent that statements contained in this presentation are not descriptions of historical facts, they are forward-looking statements reflecting management’s current beliefs and expectations.

Various important factors may cause differences between our forward-looking statements and actual results, including without limitation, unexpected or unfavorable safety or efficacy data, lower than expected enrollment rates in clinical trials, changes in the competitive landscape for our product candidates, changes in the regulatory environment, changes in market conditions or future demand for our drug candidates, the inability to protect our intellectual property, our freedom to operate under third party intellectual property, the risk that Janssen may not advance the HCV program in the time frames projected or at all, our need for future capital, the risk of litigation or other disputes, and general market and economic conditions. These and other risks and uncertainties are described in the reports filed by Achillion with the U.S. Securities and Exchange Commission (“SEC”), including its annual report on Form 10-K and quarterly reports on Form 10-Q, and subsequent filings with the SEC from time to time. You should read these reports, including the Risk Factors contained in these reports with the understanding that our actual future results may be materially different from what we expect.

All forward-looking statements contained in this presentation speak only as of the date hereof, and Achillion undertakes no obligation to update any of these statements, except as required by law.
GOALS FOR INITIAL CLINICAL DEVELOPMENT

- Demonstrate proof-of-mechanism with a highly innovative approach
 - Lack of C3 fragment deposition on PNH red blood cells
 - Reduction in plasma Bb levels

- Demonstrate proof-of-concept by showing clinical efficacy
 - Reduction in LDH
 - Increase in hemoglobin
 - Improvement in fatigue score (FACIT score)
 - Increase in PNH RBC clone size

- Elucidate PK/PD
 - Understand plasma concentrations of ACH-4471 necessary for potential efficacy

- Acceptable safety and tolerability profile
FACTOR D INHIBITOR PORTFOLIO
Unlocking the Broader Potential of ACH-4471

PLANS FOR EXPANDING CLINICAL PROGRAM

- **PNH**
 - Phase 2: Expand on-going monotherapy trial in untreated patients
 - Phase 2: Add-on trial to support “switch-strategy” for patients with suboptimal response to eculizumab

- **C3G & IC-MPGN**
 - Phase 2: 14-day dosing
 - Phase 2: 6-month dosing with long-term dosing extension
 - Natural history study: Ongoing study sponsored by Imperial College of London anticipated to enroll up to 400 patients globally

Pioneer “best-in-disease” factor D inhibition across multiple indications
FACTOR D INHIBITOR PORTFOLIO
ACH-4471: First-in-class Complement Inhibitor

GOALS FOR INITIAL CLINICAL DEVELOPMENT

✓ Demonstrate proof-of-mechanism with a highly innovative approach
 o Lack of C3 fragment deposition on PNH red blood cells
 o Reduction in plasma Bb levels

✓ Demonstrate proof-of-concept by showing clinical efficacy
 o Reduction in LDH
 o Increase in hemoglobin
 o Improvement in fatigue score (FACIT score)
 o Increase in PNH RBC clone size

✓ Elucidate PK/PD
 o Understand plasma concentrations of ACH-4471 necessary for potential efficacy

✓ Acceptable safety and tolerability profile

Early development program serves as a gateway to unlock broader potential of ACH-4471
ACH-4471
Phase 2 PNH Three-month / Long-term Extension Trials
Interim Results and Next Steps
Study Status and Interim Results
Phase 2 Trial of ACH-4471 in Untreated PNH Patients

Three-month Dose Finding

PATIENT D
Classic PNH
Total days on therapy: 9
Days on 200mg TID: --

PATIENT C
Classic PNH
Total days on therapy: 44
Days on 200mg TID: 14

PATIENT B
Aplastic Anemia / PNH
Total days on therapy: 126
Days on 200mg TID: 33

PATIENT A
Classic PNH
Total days on therapy: 132
Days on 200mg TID: 40

Enrollment: 4 to 12 pts

KEY INCLUSION / EXCLUSION CRITERIA

- PNH clone size >10%
- Anemia (Hgb < 12 g/dL)
- LDH > 1.5X ULN
- ANC ≥ 1,000/ mm³
- Platelets ≥ 50,000 μ/L
- Normal ALT
- Alk Phos ≤ 1.5X ULN

Objectives

- Change in LDH from baseline
- Improvements in Hgb, FACIT
- Increase PNH RBC clone size

Investigator determines clinical response to guide entry into Part 2

Investigator assessment of benefit determines entry into extension trial

Initial dose 100 mg TID. Protocol subsequently amended to allow:
- Newly enrolled patients to start at 150 mg TID
- Intra-patient dose escalation throughout both studies

Hgb: hemoglobin | LDH: lactose dehydrogenase | ANC: absolute neutrophil count | ALT: alanine aminotransferase | TID: three times daily

Available data as of August 8, 2017.
Phase 2 Trial of ACH-4471 in Untreated PNH Patients

Patient A: Classic PNH

36-year-old male; diagnosed with PNH in 2011 after presentation with dermal thrombosis and hemolytic anemia

- Otherwise healthy with active lifestyle; no transfusion requirements at baseline

<table>
<thead>
<tr>
<th>HgB (g/dL)</th>
<th>LDH (U/L)</th>
<th>FACIT</th>
<th>PNH clone size (%)</th>
<th>C3 fragment deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>272</td>
<td>49</td>
<td>43</td>
<td>Negative</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7</td>
<td>1848</td>
<td>32</td>
<td>11</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Baseline

<table>
<thead>
<tr>
<th>Days on therapy</th>
<th>100mg TID*</th>
<th>150mg TID*</th>
<th>175mg TID*</th>
<th>200mg TID**</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 days</td>
<td>1848</td>
<td>1848</td>
<td>1848</td>
<td>1848</td>
</tr>
<tr>
<td>62 days</td>
<td>1848</td>
<td>1848</td>
<td>1848</td>
<td>1848</td>
</tr>
<tr>
<td>17 days</td>
<td>1848</td>
<td>1848</td>
<td>1848</td>
<td>1848</td>
</tr>
<tr>
<td>40 days</td>
<td>1848</td>
<td>1848</td>
<td>1848</td>
<td>1848</td>
</tr>
</tbody>
</table>

Status:

- Patient remains on 200 mg TID

Hgb: hemoglobin | LDH: lactate dehydrogenase | TID: three times daily

* Median values for LDH and HgB shown.
** Individual data points shown.
Phase 2 Trial of ACH-4471 in Untreated PNH Patients
Patient C: Classic PNH

34-year-old male; diagnosed with PNH in 2003
- Otherwise healthy with active lifestyle; no transfusion requirements at baseline (BL)

<table>
<thead>
<tr>
<th>Days on therapy</th>
<th>HgB (g/dL)</th>
<th>LDH (U/L)</th>
<th>FACIT</th>
<th>PNH clone size (%)</th>
<th>C3 fragment deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>11.7</td>
<td>1272</td>
<td>23</td>
<td>24</td>
<td>Negative</td>
</tr>
<tr>
<td>Current Value</td>
<td>12.8</td>
<td>551</td>
<td>36</td>
<td>43</td>
<td>Negative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days on therapy</th>
<th>Dose 150mg TID* 13 days</th>
<th>Dose 175mg TID** 14 days</th>
<th>Dose 200mg TID** 14 days†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HgB (g/dL)</td>
<td>LDH (U/L)</td>
<td>FACIT</td>
</tr>
<tr>
<td>Baseline</td>
<td>11.7</td>
<td>1272</td>
<td>23</td>
</tr>
</tbody>
</table>

Status:
- Patient reported non-compliance after initiation of 200 mg TID dose
- Patient voluntarily withdrew consent for reasons unrelated to safety on day 41

HgB: hemoglobin | LDH: lactose dehydrogenase | TID: three times daily
† Patient began taper on day 41 following withdrawn consent.
* Median values for LDH and HgB shown.
** Individual data points shown.

Hgb, hemoglobin; LDH, lactate dehydrogenase; TID, three times daily; ULN, upper limit of normal.
Phase 2 Trial of ACH-4471 in Untreated PNH Patients

Patient D: Classic PNH

54-year-old male; diagnosed in 2012 with PNH
- No history of transfusion-dependence

<table>
<thead>
<tr>
<th>HgB (g/dL)</th>
<th>LDH (U/L)</th>
<th>FACIT</th>
<th>PNH clone size (%)</th>
<th>C3 fragment deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Value</td>
<td>12.4</td>
<td>504</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Baseline</td>
<td>12.0</td>
<td>899</td>
<td>n/a</td>
<td>36</td>
</tr>
</tbody>
</table>

Baseline Events:
- 150mg TID
 - Days on therapy: 9 days
- 175mg TID
- 200mg TID

Status:
- Patient recently enrolled
- Currently receiving 150 mg TID dose and will be evaluated for intra-patient dose escalation

Hgb: hemoglobin | **LDH**: lactose dehydrogenase | **TID**: three times daily

* Individual data points shown.
Patient B: Aplastic Anemia PNH

41-year-old male; diagnosed with AA in 2008; subsequently diagnosed with PNH in 2016

- Treated with ATG, oral prednisone and cyclosporine; ending in 2012
- Baseline marrow function: platelets range 30-60K, ANC 0.7-1.5 and requires Q3-4 weekly RBC transfusions to maintain HgB ≥ 8 g/dL

<table>
<thead>
<tr>
<th></th>
<th>HgB (g/dL)</th>
<th>LDH (U/L)</th>
<th>FACIT</th>
<th>PNH clone size (%)</th>
<th>C3 fragment deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>7.5</td>
<td>941</td>
<td>22</td>
<td>20</td>
<td>Negative</td>
</tr>
</tbody>
</table>

AA: Aplastic Anemia | Hgb: hemoglobin | LDH: lactose dehydrogenase
ANC: absolute neutrophil count | TID: three times daily
Two most clinically overt presentations of PNH are:
- Classic PNH: > hemolysis without bone marrow failure
- AA: Overlap of both PNH and bone marrow failure
- Both are associated with elevated risk of thrombosis, chronic kidney disease, and fatigue
- Estimated 25% PNH patients have overlap
Phase 2 Trial of ACH-4471 in Untreated PNH Patients

Patient B: Aplastic Anemia PNH

41-year-old male; diagnosed with AA in 2008; subsequently diagnosed with PNH in 2016
- Treated with ATG, oral prednisone and cyclosporine; ending in 2012
- Baseline marrow function: platelets range 30-60K, ANC 0.7-1.5 and requires Q3-4 weekly RBC transfusions to maintain Hgb ≥ 8 g/dL

Current Value

<table>
<thead>
<tr>
<th></th>
<th>HgB (g/dL)</th>
<th>LDH (U/L)</th>
<th>FACIT</th>
<th>PNH clone size (%)</th>
<th>C3 fragment deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>7.5</td>
<td>941</td>
<td>22</td>
<td>20</td>
<td>Negative</td>
</tr>
<tr>
<td>0.9</td>
<td>9.0</td>
<td>461</td>
<td>31</td>
<td>36</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Baseline

- **100mg TID**
 - Duration: 13 days
- **150mg TID**
 - Duration: 58 days
- **175mg TID**
 - Duration: 22 days
- **200mg TID**
 - Duration: 33 days

Status:
- Patient remains on 200 mg TID
- Patient continued to receive RBC transfusions during therapy

LDH (U/mL)

- 941 (2x ULN)
- 7.5 (1.5x ULN)

HgB (g/dL)

- 9.0
- 461

AA: Aplastic Anemia | Hgb: hemoglobin | LDH: lactose dehydrogenase

ANC: absolute neutrophil count | TID: three times daily

* Median values for LDH and Hgb shown.
** Individual data points shown.
Phase 2 Trial of ACH-4471 in Untreated PNH Patients
Summary of Interim Data

- ACH-4471 has been well tolerated with no SAEs. No clinically significant elevations in liver enzymes.
- At 200 mg TID, clinically significant improvements observed include:
 - Improvements in hemoglobin:
 - 2.4 g/dL increase and a 1.1 g/dL increase for the 2 classic PNH patients at dose of 200mg TID
 - Increase in PNH type III RBC clone size
 - Clinically meaningful reductions in LDH
 - Patient interviews and increase in objective fatigue scores show meaningful improvements in well being
- No evidence of C3 fragment deposition on PNH RBCs
- Increases in clone size demonstrated PNH RBC protection from hemolysis
- Sustained decreases in plasma Bb level indicated targeted inhibition of factor D (data not shown)
Unlocking the Broader Potential of ACH-4471

PLANS FOR EXPANDING CLINICAL PROGRAM

PNH
- Phase 2: Expand on-going monotherapy trial in untreated patients
- Phase 2: Add-on trial to support “switch-strategy” for patients with suboptimal response to eculizumab

C3G & IC-MPGN
- Phase 2: 14-day dosing
- Phase 2: 6-month dosing with long-term dosing extension
- Natural history study: Ongoing study sponsored by Imperial College of London anticipated to enroll up to 400 patients globally

Interim results generated with ACH-4471 have been shared with regulatory agencies in order to support planned expansion of PNH and C3G programs
Measures of Clinical Efficacy & Safety in PNH

<table>
<thead>
<tr>
<th>Measure</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose dehydrogenase (LDH)</td>
<td>Clinically meaningful reduction in LDH</td>
</tr>
<tr>
<td>Hemoglobin (Hgb)</td>
<td>Stabilize / increase hemoglobin</td>
</tr>
<tr>
<td>C3 fragment deposition</td>
<td>Observe no C3 fragment deposition on PNH RBCs</td>
</tr>
<tr>
<td>Fatigue (FACIT scale)</td>
<td>Improvement over time in objective measures of patient fatigue</td>
</tr>
<tr>
<td>PNH RBC Clone Size</td>
<td>Increase percentage of PNH RBC clones from baseline</td>
</tr>
<tr>
<td>Safety</td>
<td>Good tolerability profile</td>
</tr>
</tbody>
</table>

Clinical data generated to date highlight the potential role of factor D inhibition in PNH
Extended-Release Activities for ACH-4471

ONGOING EXTENDED-RELEASE (XR) FORMULATION

Objective Develop an extended release tablet formulation to allow for:
 - Optimized trough exposures
 - Reduced dosing frequency

ACH-4471 has high permeability with animal and modeling data reporting good absorption throughout the GI tract

Human bioavailability study for extended release tablet is planned for 4Q 2017
FACTOR D INHIBITOR PORTFOLIO

ACH-5228: Next-Generation Oral Factor D Inhibitor

- Next-generation factor D inhibitor platform can be leveraged to create additional strategic options for value creation
- Structure alteration in next-generation factor D inhibitors target improvements in potency and pharmacokinetic properties
- ACH-5228: GLP studies are on-going with goal of initiating clinical studies in 4Q17

AP Hemolysis

<table>
<thead>
<tr>
<th>Compound ID</th>
<th>IC₉₀ (nM)</th>
<th>IC₉₀ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH-4471</td>
<td>22</td>
<td>90</td>
</tr>
<tr>
<td>ACH-5228</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>ACH-5548</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>ACH-5628</td>
<td>17</td>
<td>75</td>
</tr>
<tr>
<td>ACH-5931</td>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

Plasma Concentrations after an Oral Dosing in Beagle Dogs

![Plasma Concentrations graph](image-url)
GEOGRAPHIC ATROPHY (GA) AND DRY AMD

Factor D Inhibitors in Ophthalmological Disease

- Geographic Atrophy (GA) is an advanced form of dry Age-related Macular Degeneration (dry AMD)
- GA is a leading cause of impaired vision and blindness that affects more than 2.6 million people in US & EU and more than 5 million world-wide
- Factor D is a validated target as demonstrated by Genentech’s lampalizumab program
 - Phase 3 trial with lampalizumab underway evaluating intra-vitreal injections every 4 or 6 weeks
- Achillion is targeting treatment duration of 3 months or longer with diverse small molecule factor D inhibitors
 - Four diverse compounds and distinct delivery approaches are advancing this year with the goal of initiating IND enabling studies in 2018

Sources: www.clinicaltrials.gov, Roche
Achillion Development Portfolio

HEPATITIS C

- **JNJ-4178**: Oral
 (odasvir+AL-335+simeprevir)
 6- and 8-week treatment regimen

COMPLEMENT FACTOR D PLATFORM

- **Paroxysmal Nocturnal Hemoglobinuria (PNH)**
 - **ACH-4471**: Factor D Inhibitor
 - Oral

- **C3 Glomerulopathy (C3G) & IC - MPGN**
 - **ACH-4471**: Factor D Inhibitor
 - Oral

- **AP-mediated diseases**
 - **ACH-5228**: Next-Generation fD inhibitor
 - Oral

- **Geographic Atrophy (GA), advanced form of dry AMD**
 - **Next-generation fD inhibitors**
 - Ophthalmic

FD: Factor D | DMPK: Drug Metabolism/Pharmacokinetics | AP: Alternative Pathway

August 2017
Balance Sheet Metrics

<table>
<thead>
<tr>
<th>Description</th>
<th>As of 6/30/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash, cash equivalents, marketable securities and interest receivable</td>
<td>$369.9 million</td>
</tr>
<tr>
<td>Debt obligations</td>
<td>$0.5 million</td>
</tr>
<tr>
<td>Shares outstanding</td>
<td>136.8 million</td>
</tr>
</tbody>
</table>

Top Shareholders

<table>
<thead>
<tr>
<th>Shareholder Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson & Johnson Development Corp.</td>
<td>18.4 million (13%)</td>
</tr>
<tr>
<td>RA Capital</td>
<td>13.6 million (10%)</td>
</tr>
<tr>
<td>Orbimed Advisors</td>
<td>13.1 million (10%)</td>
</tr>
<tr>
<td>Blackrock, Inc.</td>
<td>9.9 million (7%)</td>
</tr>
<tr>
<td>Vanguard Group</td>
<td>9.6 million (7%)</td>
</tr>
<tr>
<td>Janus Capital Management</td>
<td>4.4 million (3%)</td>
</tr>
<tr>
<td>State Street Global Advisors</td>
<td>4.3 million (3%)</td>
</tr>
<tr>
<td>Goldman Sachs & Co.</td>
<td>3.7 million (3%)</td>
</tr>
<tr>
<td>Biotechnology Value Fund (BVF)</td>
<td>3.3 million (2%)</td>
</tr>
<tr>
<td>Numeric Investors</td>
<td>3.0 million (2%)</td>
</tr>
</tbody>
</table>

† Based upon most recent SEC filings.
Strength to Achieve our Goals

Near-term Development Plan

<table>
<thead>
<tr>
<th>Compound</th>
<th>Indication</th>
<th>Next steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH-4471</td>
<td>PNH</td>
<td>Phase 2: Expand on-going monotherapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase 2: Add-on trial to support “switch strategy” for suboptimal responders</td>
</tr>
<tr>
<td></td>
<td>C3G & IC-MPGN</td>
<td>Phase 2: 14-day dosing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase 2: Long-term (6-month dosing)</td>
</tr>
<tr>
<td></td>
<td>Extended Release Tablet</td>
<td>Phase 1 Bioavailability</td>
</tr>
<tr>
<td>ACH-5228</td>
<td>AP-mediated diseases (acute/chronic)</td>
<td>Phase 1 SAD/MAD</td>
</tr>
<tr>
<td>Ophthalmology</td>
<td>Geographic Atrophy</td>
<td>Complete Preclinical Assessment</td>
</tr>
</tbody>
</table>

$369.9 million in cash, cash equivalents, and interest receivable to support expansion

HCV: worldwide collaboration with Janssen for JNJ-4178
C3 GLOMERULOPATHY (C3G)
A Rare Disease with No Available Treatment

- C3G includes both Dense Deposit Disease (DDD) and C3 glomerulonephritis (C3GN)

- Estimated prevalence of 8–12 people affected per million in major markets
 - Incidence rate of 1–2 per million patients diagnosed with C3G on an annual basis

- There are no approved treatments for patients with C3G
 - Non-specific treatment approaches include blood pressure control and broad immunosuppression

- Significant unmet medical need as nearly half of C3G patients progress to end-stage renal disease
 - 30-50% progress to ESRD within 10 years
 - ~70% of patients experience disease recurrence post renal transplant, with a 50% chance of graft loss

DDD AND C3GN IMPACT ON RENAL SURVIVAL

Barbour et al. (2015); NICE C3G Evidence Summary (2015);
Achillion was lead sponsor of externally-led PFDD meeting focused on C3G

- First renal disease discussed at a PFDD meeting on August 4, 2017

Led by the National Kidney Foundation

Goal is to understand the patient perspective of their disease

- PFDD meeting provides an important opportunity to us and to the FDA to hear directly from patients / caregivers
- Understand the impact of the disease on patients’ daily lives
- Input may inform FDA’s decisions throughout the drug development process

Patient experiences shared at the meeting highlight the unmet need and the urgency to develop transformative therapies
Second Quarter 2017 Results and Pipeline Update

Our Value, Our Science, Our Focus

August 8, 2017